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X-Ray Pendelliisung Fringes in Darwin Reflection* 
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Department of Materials Science and Engineering, Cornell Unh~ersity, Ithaca, New York, U.S.A. 

(Received 16 August 1967) 

Oscillations have been observed in the tails of the Darwin curve from thin specimens of silicon. Dyn- 
amical theory predicts such oscillations (PendellSsung) for plane wave incident conditions in which 
two wave points on the same branch of the dispersion surface interfere and produce beating in the 
diffracted intensity. The usual PendellSsung is observed in transmission in which beating occurs be- 
tween wave fields on different branches of the dispersion surface related by spherical rather than plane 
wave conditions. The present experiment uses an asymmetrically cut first crystal to increase the effective 
width of the incident wave and therefore approach the plane wave condition. Quantitative fringe 
measurements versus thickness are in fair agreement with theory. The intensity and contrast of the 
fringes are in poor agreement with theory. Several of the more important factors which reduce the 
contrast are discussed. With a relatively simple assumption, the observed and expected intensity dis- 
locations can be brought into good agreement. 

Introduction 

Pendell~Ssung, in the sense of dynamical diffraction, 
refers to the beating inside a crystal of two wave fields 
which are coherently related. This phenomenon has 
been observed in the transmission case first by Kato & 
Lang (1959) and utilized by many other investigators 
to give important confirmations of the predictions of 
the dynamical theory as well as to arrive at accurate 
determinations of the scattering factors of certain 
materials (Hattori, Kuriyama, Katagawa & Kato, 
1965; Hart, 1966; Batterman & Patel, 1966). In all of 
these cases the beating is between two wave fields which 
are coherently related because of the spherical nature 
of the incident wave front. In all the transmission cases 
(the so-called Laue case) the two beating wave fields 
have their tiepoints on separate branches of the disper- 
sion surface. In the reflection case, beating should oc- 
cur between wave points on the same branch of the dis- 
persion surface whose wave vectors are coherently 
related by plane wave not spherical wave criteria. 
Ewald (1933) first predicted Pendell~Ssung in the reflec- 
tion case. This is discussed in some detail in the next 
section. 

We have observed this Pendell/Ssung between such 
wave fields for the case of Darwin reflection from thin 
perfect crystals of silicon. To the best of our knowledge 
this is the first experimental verification of this type 
of Pendell/Ssung phenomenon. 

Theory 

Diffracted intensity from thin slabs 
The dispersion surface for the usual Pendell6sung 

effect in transmission is given in Fig. 1. Wave points A 
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and B would be selected by an infinite incident plane 
wave whose outside wave point is P. Beating would 
occur between wave vector KHA and KHB (as well as 
K0A and K0B which are not shown in the Figure). Two 
factors, however, prevent this from being the case. 
One is, that in the usual experimental arrangement the 
range of incident angles is much larger than the reflec- 
tion width so that all tiepoints on both branches are 
excited and interference between all tiepoints can take 
place. The other factor is that the incident wave front 
is usually limited by a narrow slit, so that the waves 
of the different tiepoints which have different Poynting 
vectors diverge in the crystal medium and no longer 
can superpose and exhibit the PendellSsung effect. 
Thus, in Fig. 1, the Poynting vectors SA and SB, which 
are normal to the dispersion surface, can make a large 
angle with one another (up to a maximum of 20). The 
wave point ,4' is also coherently excited and the Poynt- 
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Fig. l. Dispersion surface and tiepoints for symmetric Laue 
transmission. Tiepoints A and B are related by plane wave 
conditions while A and A' interfere through spherical wave 
criteria. 
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ing vector SA" is parallel to Sa and it is these two 
wavepoints which interfere with the beat wave vector 
given by KnA -- KnA" = K0A -- KoA' not KI-IA-- Kt-i8 
which the plane wave theory would predict. 

The important criteria of wave-front coherency 
which must be fulfilled in order to observe Pendel- 
l~Ssung in the Bragg case are discussed in the next sec- 
tion. For the present we will discuss only the usual in- 
finite plane wave treatment. 

Von Laue (1941) and Zachariasen (1945) have cal- 
culated the reflection curves for non-absorbing thin 
crystals in reflection geometry. When the crystal is 
thin, instead of the usual Darwin top-hat curve with a 
range of total reflection, the thin crystal curve has 
tails of an oscillating nature having zeros at regular 
intervals which depend on the crystal thickness (see 
Fig.3). When absorption is present the curves are 
modified somewhat and nodes of zero intensity are no 
longer present. James (1963) has worked out in detail 
the case including absorption. Rather than repeat 
James's derivation here we will just give the results 
and present instead a physical explanation of the ori- 
gin of the Pendell/Ssung phenomenon for reflection 
from a thin slab. 

In Fig.2(a) we show the dispersion surface for the 
symmetric reflection case where the two wave points 
(1) and (2) are selected by the incident conditions. 
Fig. 2(b) shows the actual experimental geometry in the 
same orientation as in Fig. 2(a) with the amplitudes of 
the inside and outside waves shown schematically. We 
assume for the moment no absorption. We will use 
notation consistent with that in the review paper of 
Batterman & Cole (1964). The boundary conditions 
on amplitudes (Batterman & Cole, 1964, sec. 2.4) de- 
mand that at the upper surface, Z = 0 ;  

E ~ =  Eol + Eo2 (1) 

Eln = E m  + EI-Iz (2) 

and at the lower surface, Z =  d. 

0 = E r a  exp ( - 2 n i K n l .  r') 

+ E/-/2 exp ( -  2niKH2. r') (3) 

where r' lies in Z =  d. The electric field associated with 
any wave is of the form el = El exp ( - 2 n i K l .  r). Equa- 
tion (3) states that no diffracted ray passes through the 
lower surface. E~ and E~  are l he amplitudes of the 
outside incident and diffracted waves respectively and 
E~ is the transmitted amplitude through the bottom 
of the slab. Equation (3) can be written 

EH1/EH2 = -- e -i~° (4) 

where ~o = 2ni(Kn2-- Knl • r') = 2niIKn2-- Km Id for the 
symmetric case where Kn2-KH1 is normal to the slab. 
Equation (4) states that at any point in the crystal the 
two waves travelling in the diffracted beam direction 
have the same absolute amplitude. These two waves 
have their wave vectors very nearly parallel but differ- 
ent in magnitude by [KHz--KHI[, which is the chord 
connecting the two wave points on a given branch of 
the dispersion surface. These two infinite plane waves 
therefore beat with a period equal to [K/-/2-Knl] -1 
with nodes of intensity in planes parallel to the surface 
of the crystal slab. The diffracted intensity which by 
equation (2) is the sum of these two waves at the 
entrance surface will be zero whenever this nodal plane 
is coincident with the surface. As the angle of incidence 
is changed the beat period changes and nodal planes 
are swept through the surface cancelling the diffracted 
wave. 
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Fig.2. (a) Dispersion surface for symmetric Bragg reflection. Em and Eoi schematically represent the amplitudes at each of the 
two wave points (i= 1,2). (b) Wave amplitudes that must satisfy the boundary conditions at the two surfaces leading to equa- 
tions (1), (2) and (3). The ordinate for the tails is reduced by a factor of 5. 
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Wave field (1) composed of K01 and KH1 has a 
Poynt ing vector Sx towards the crystal surface. I t  is 
tempting to say that  this field is generated by reflection 
f rom the lower surface (it is indeed just  this wave field 
that  does not exist for the infinite crystal), al though 
this is not  strictly correct. It  must  be remembered that  
we are dealing with infinite plane waves, and the con- 
cept of  wavefield (2) arriving at the bo t tom surface and 
generating (1) loses its significance. 

When absorpt ion is taken into account, wave field 
(1) which arrives at the upper surface from within the 
crystal has suffered at tenuation,  whereas field (2) which 
is just  entering the crystal has not  yet suffered absorp- 
tion. Thus, the two waves Em and EHz no longer have 
the same absolute ampli tude at the surface and nodes 
of zero diffracted intensity disappear. However, since 
we usually are dealing with quite thin crystals the ab- 
sorption effects should be quite small and oscillations 
nearly go to zero. It is worthwhile pointing out that  
since in the Bragg geometry we always deal with two 
wave fields on the same branch, the absorpt ion of each 
field is the same (in the symmetric case) but  since one 
field [(1) in Fig.2(a)] propagates towards the surface, 
its dynamical  absorpt ion coefficient is the negative that  
of wave field (2), because the intensity in the field in- 
creases as one goes deeper in the crystal. The equa- 
tions which describe the reflection coefficient R0/') are 
given below for the case of symmetric reflection from 
a slab of  thickness d. The equations are basically those 
of  James (1963) with a slight change in notat ion to be 
consistent with that  of Bat terman & Cole (1964). 

The data  will be presented on an r/' scale which is 
related to the deviation from the uncorrected Bragg 
angle, AO, by 

rf=(-AO sin 2 0 +  FF'o)IIPIFF'n (5) 

where F =  (e2/mc2)2ZN/n, FIt = F'n+ iF~ is the structure 
factor for the hkl reflection, P = 1 or cos 20 for the a 
and re states of  polarization, N is the number  of unit 
cells per unit volume, 2 the wave length and (e2/mc 2) 
the classical electron radius. The reflection curve is 

divided into three ranges: range (1), r/' < - 1 ; range (2), 
- 1 < r/' < + 1 ; range (3), n' > 1. A complex quanti ty v 
is defined by: range (1), r / = - c o s h  v; range (2), r /= 
cos v; range (3), r /= cosh v, where r /= r / '+  it/" and v = 
v'+iv". For  range (1) the reflection coefficient* is 
given by 

cosh (0 - cos fld 
Rl(q') = cosh (~ +-2v;) -  cos-(fld--2ff ~) (6) 

~o= -pz(rf)d= -(Po sin O) ( r / ' - l P l O / ( r / ' 2 - 1 )  ~ (7) 

fl= - (2n/A0) (r / 'z-  1) ~ (8) 

r#" Fff IPIr#'e) (9) 
= iP[F-~ (1 - 

v"= -11"/(rf 2-1)* , (10) 

where pz(rf) is the dynamical  absorpt ion coefficient, 
P0 the normal  linear absorpt ion coefficient, e=F~/Fo" 
and 

n sin 0 
A 0 = -(eZl-mc2)-2-F,RN (11 ) 

is called the beat period. In all cases we have taken 
F'~/F~ to be a small quanti ty and to second order 
IFHI=F~r. The quanti ty  (r/ 'z-1)*/A0 gives the length 
of the chord between the two wave points in Fig. 2(a). 

For  range (2) 

cosh ~0- cos fld 
R2(r/') = cosh (~0+ 2V;-')---cos (rid + 2v') ' (l 2) 

where 
f l=  --(/t0/sin 0) ( i f - - l e l ~ ) / ( 1 _  ~,2), (13) 

~0= -(2~d/A0) (1 -q '9*  (14) 

v'= -~"/ (1_ ~,2)+, 

For  range (3), R3(r/') is obtained f rom Ri(r/') by chang- 
ing the sign before the v' and v" terms in equation (6) 

* The equations for the reflection coefficients correspond 
to equations 65.8 and 65.12 of James (1963). 
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Fig. 3. Theoretical diffraction curve from a thin slab with d/Ao=0.53 [Equation (11)]. The upper curve is for no absorption 
[Equations (15) and (16)], while the lower curve includes the affect of absorption [Equations (6) and (12)]. The curve is plotted 
with rf increasing to the left so that Bragg angle increases to the right. The ordinate for the tails is reduced by a factor of 5. 
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and v" is given by equation (10) with the minus sign 
before r/" changed to plus. F0' is related to the linear 
absorption coefficient P0 by F'o" =#o/2r&F. The above 
equations are approximations valid when the absorp- 
tion terms are small and r/' is not very close to unity. 

When absorption is neglected, v " = # 0 = 0  and the 
above equations simplify to 

1 - cos fld 
R I = R 3  = 

cosh 2v-cosfld'  

where fl is given by equation (8) and 

(15) 

cosh ~o- 1 (16) 
Rz = co sh q;--~2r/z- 1) '  

where ~0 is given by equation (14). 
For the non-absorbing case we see from equations 

(15) and (8) that zeros in the reflected intensity cor- 
respond to values of r / such  that 

d 
A---o (q,z_ 1)÷ =m,  (17) 

where m is an integer. For large m, adjacent zeros of 
diffracted intensity are separated by Or/=Add. It can 
be seen from equation (6) that with absorption the 
numerator will always be greater than zero since 
cosh x > 1, and zeros in the diffracted intensity will not 
occur. We plot in Fig. 3 the theoretical curves for crystal 
with d/Ao=0.53, which corresponds to the 333 reflec- 
tion of silicon and a crystal thickness of 13.6 microns. 
As expected, the affect of absorption is to eliminate 
zero nodes and is asymmetric. The absorption has a 
larger effect on the high angle side (negative r/) cor- 
responding to wave points on the branch of the dis- 
persion surface indicated in Fig. 2(a). 

5 

Ca) 

(b) 
Fig.4. (a) Diffraction from a thin slab when the coherence 

width wl is small compared with the thickness. The shaded 
area is the region of overlap of the two wave fields. (b) As 
in (a), but with a width W which is large compared with 
the thickness. In this case the wave fields overlap at the upper 
surface. 

Problem of coherency of the wave front 

Aside from the expected experimental considera- 
tions of crystalline perfection of the specimen, freedom 
from bending and parallelness of the faces of the slab, 
one must consider the lateral coherence of the X-ray 
wave field used in the experiment. 

The importance of this property (and our use of the 
term coherency) can be illustrated in the following 
way: Consider a monochromatic point source of 
X-rays at a distance R from the crystal slab [Fig. 4(a)]. 
Since the crystal we are investigating has both a reflec- 
tion width and a fringe separation of a few seconds of 
arc, we need as the probing incident beam an angular 
width of say 0.5 sec or less. The width wl, at the crystal 
corresponding to this angular range, we will call the 
lateral coherence, and from Fig. 4(a) 

wl = R0/sin 0.  (18) 

In our experiment R=25  cm and 0=47.5 ° so that 
Wl -~ 1 micron. This represents the width of the coherent 
wave front and it is roughly within this range we can 
consider the interaction of internal wave fields to 
supply the Pendell6sung phenomenon we are looking 
for. More explicitly, it is only over the lateral extent 
wl that wave field (2) in Fig.2(a) is excited. This field 
must propagate into the slab, reflect at the back face 
and generate field (1) which propagates towards the 
surface. Thus, in Fig.4(a), only in the shaded region 
will the two wave fields overlap and Pendell6sung 
occur. Clearly the situation shown in Fig. 4(a) will not 
produce any beats, because nowhere at the upper crys- 
tal surface do the two fields overlap. In other words, 
we are nowhere near satisfying the criteria necessary 
for the infinite plane wave treatment. What we would 
like to have is something more like the situation in 
Fig. 4(b) where a large overlapping region exists at the 
upper surface. 

In the present experiment we are dealing with the 333 
reflection of silicon. This reflection was picked as a 
compromise between two experimental parameters: 
slab thickness vs fringe separation. For 333 the Dar- 
win width is 1.9" which is more difficult to work with 
than 111, which has a width of 7". However, the crys- 
tal thickness necessary to get reasonable fringe separa- 
tion is about 3 microns for 111 while for 333 it is the 
order of 15 microns. 5-Micron crystals are very dif- 
ficult to mount without bending so the compromise was 
made with the 333 reflection, even though the fringe 
separation will tend to be smaller than for 111. 

Therefore, with a crystal thickness of about 15p and 
a coherence width of I/t, we would have the undesir- 
able situation in Fig.4(a), and consequently, see no 
Pendell~Ssung effect. Fortunately, there is available a 
relatively simple means of extending the lateral coher- 
ence of the wave front and still isolate a beam of very 
narrow angular width. 

Here we take advantage of the properties of an 
asymmetrically cut first crystal to narrow the angular 



154 X-RAY P E N D E L L ( } S U N G  F R I N G E S  IN D A R W I N  R E F L E C T I O N  

range of the Darwin curve (Renninger, 1961; Kohra, 
1962). Fig. 5 shows an asymmetrically cut first crystal 
where the primary beam makes an angle of e with the 
crystal surface. According to dynamical theory the an- 
gular width of the diffracted rays, 62, will be 

( sin~ ) ~ 
62=60 sin (20-c0 (19) 

where 6o is the angular width of total reflection for the 
symmetric Bragg case (the usual Darwin width). In 
our ease 0=47.5 ° and ~=2  °, so that 62 is 0.19 that 
of the Darwin width. While equation (19) refers to the 
width of reflected beam, a similar expression gives 61, 
the angular range of incident beam that will produce a 
reflected beam of angular range 62: 

61=6o ( Sin (20-~) ) -~ . (20) 
S I D  

It is clear from equations (19) and (20) that 62/61 = 
sin e/sin (20 -e )  and for our case this is a factor of 
0.0348. That is, the asymmetric cut crystal acts like 
an X-ray condensing lens reducing the divergence of 
a beam by a factor of nearly 30. From the geometry 
of Fig. 5 it can be easily shown that 

W= R61 sin (20-~)/sin e sin 0 ,  (21) 

where W is the lateral extent of the beam parallel to 
the diffracting planes with angular divergence 62. Fig. 5 
represents our experimental set up in which both the 
asymmetrical first crystal and the thin slab are set for 
333 diffraction. The 333 Darwin width 60 is 1.9" for 
silicon with Cu K~ radiation. The incident beam on the 
specimen has an angular width 62=0.37" [equation 
(19)] and has a lateral width (all rays within this width 
are parallel to 0-37") of W= 508 microns. With a point 
source at distance R and the same angular width 62 
seen by the specimen, we would get the much smaller 
width Wl=R62/sinO [equation (18)]. Dividing this 

into (21) and combining with equations (19) and (20) 

weget  W /sin 2 0 - ~  2 
(22) - -  o -  

W1 sin 
The magnification in lateral width according to this 
would be (28.8)2--830. The net result of the asym- 
metrically cut first crystal is to provide a beam that 
would be more nearly that of Fig. 4(b) rather than 4(a) 
and we consequently would expect to see the Pendel- 
15sung phenomenon. Thus, it is possible to use the 
asymmetric cut crystal as a means of providing an 
X-ray wave front of large lateral width with a small 
angular divergence. In other words, the wave front 
can be made to approach closer to that of an infinite 
plane wave than would be possible by more conven- 
tional arrangements. 

Experimental 

The experimental arrangement is shown schematically 
in Fig. 5. Cu Kc~ radiation from the point focus (1 × 1 
mm 2) was incident on the asymmetrically cut first 
silicon crystal, C1 and the second crystal C2 adjusted 
for diffraction in the (3, 3) parallel double crystal spec- 
trometer arrangement. Since the Bragg angle is 47-5 °, 
which is quite close to 45 °, the reflected Cu Kct radia- 
tion from C1 was almost completely perpendicularly 
polarized. As stated in the previous section, the first 
crystal is cut with an asymmetry angle ~ of 2 °. The 
second crystals were thin silicon lamellae with ( l l l )  
faces with an area of about 1 cm 2 and thickness be- 
tween 7 and 30/zm. They were of the type used for 
p - n  junction particle detectors and were prepared by 
T.C. Madden of the Bell Telephone Laboratories (see 
Madden & Gibson, 1964). The slit $I had a pinhole 
with a diameter of __ 2 mm allowing the first crystal to 
produce reflected radiation along its entire width. $2 
was a pinhole of 0.5 mm diameter which could be 

/ I 

Fig.5. Experimental arrangement with beam divergences. X, Cu target anode, $1, $2 pinholes; C1, 1st crystal Si(333) and C2, 
thin silicon of thickness d; SCb SC2 are two NaI scintillation counters. 
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translated horizontally so that different portions of the 
thin crystals could be examined. The scintillation coun- 
ter SCx was used to adjust the first crystal and to 
measure the thickness of C2 by absorption precisely at 
that point on its face which produced the symmetrically 
diffracted beam measured with counter SC2. 

The angular position of the specimen could be ad- 
justed to a small fraction of a second of arc either in 
small steps by hand, or continously with a synchronous 
motor. The thin second crystal was extremely sensitive 
to thermal and mechanical disturbances as well as 
minute air currents. To minimize these effects, the en- 
tire spectrometer was enclosed within a copper shell 
covered with insulating material. Both the shell and 
the spectrometer were in good thermal contact with 
copper tubing in which thermostatically controlled 
water was circulated. 
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Fig. 6. Experimental results for a 13.6/zm crystal in the angular 
range from 12 to 4" on the low angle side of the main maxi- 
mum. The count rate at the peak is 3400 cps. The lower 
curve is obtained by subtracting the monotonic curve from 
the data. 
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Fig. 7. The effect of convolution on the theoretical diffraction 
curve. The lower curve is taken from Fig. 3 (with absorption). 
The upper curve is essentially the convolution of the lower 
curve with the asymmetric Darwin-Prins curve of the first 
crystal. 

The most critical problem was the mounting of the 
second crystal to its holder. This was done with a 
small amount of beeswax near the corner of the crys- 
tal. The following properties were found if the contact 
between specimen and its holder was too light. The 
angular position of C2 was not stable enough, it 
changed even after several days. The crystal was so 
sensitive to vibrations that it was impossible to get a 
record of the reflection curve with the synchronous 
motor which was directly attached to the goniometer. 
Even microphonic effects could sometimes be observed 
(i.e. sensitivity to certain acoustic frequencies). If on 
the other hand, the contact was too firm, deformation 
was introduced into the crystal leading to a broadening 
of the reflection curves and a diminishing or complete 
loss of fringe contrast. The proper amount of contact 
was determined strictly by trial and error. 

To check the alignment of the spectrometer, we 
used a 2 mm thick silicon crystal in position C2. The 
theoretical half width (full width at half maximum) 
for a non-absorbing crystal is 3]/2]PIFFH/2 sin 0 [this 
is the range Ar/ '=3[/2/2 in equation (5)]. The range 
of total reflection is 2]P]FFn/sin 0 corresponding to 
At/ '--2 in equation (5). The half-width using the Hat- 
tort et al. (1965) experimental value of Fn(333)=5.9,  
which includes thermal motion, is 1-94" for the sym- 
metrically cut crystal and 0.39" for the asymmetrically 
cut first crystal. The convoluted width should there- 
fore be somewhat less than 2.3". The measured value 
of 2.55" was 10% higher, which is in reasonable agree- 
ment with theory. 

The thin crystal was investigated over its face by 
moving pinhole $2 in a plane normal to Fig.5. The 
results of many attempts with several silicon wafers 
may be summarized as follows: A half-width in the 
range 2.7 to 3-5 seconds of arc was the necessary but 
not sufficient condition to detect fringes which could 
be quantitatively evaluated. Our best results were ob- 
tained in a particular area of 4 × 8 mm 2 over which 
the thickness ranged from 7 to 23 microns. 

For each measurement the curve was point-counted 
in steps of 0.16" starting from a position 12" from the 
peak maximum. The fringes, when detected, covered 
a range of about 9" and the curves comprised some 50 
measurements each of 1 to 2 minute duration. The 
stability of the arrangement was not good enough to 
guarantee that the crystal position would remain con- 
stant over the total measurement time. Therefore, after 
about 10 measurements the zero position was checked 
by determining the position of a given intensity point 
on the steep portion of the main maximum. The fringe 
heights tended to be different on the high and low 
angle sides consistent with that shown in Fig. 3. The 
low angle side, involving the field with lowest absorp- 
tion, always gave the best fringe contrast and for some 
runs this was the only side measured. 

For each fringe measurement the crystal thickness 
was determined by the absorption in the foil measured 
with counter SCI. For this determination the value of 
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psi, cu r  =144 cm -1 was used. This was previously 
measured by one of the authors (Hildebrandt, 1968) 
and is in good agreement with values of Lefeld-Sos- 
nowska (1964) 150 cm -1 and Cooper (1965) (inter- 
polated) 148 cm -1. 

To prove that the fringes were not the result of any 
mechanical periodicity, a run was made with the spe- 
cimen replaced by a thick silicon crystal. The data were 
taken with the identical statistical counting as with the 
thin lamella. A smooth monotonic peak with no hint 
of any fringes was observed. We also measured the 
entire angular range of one thin crystal region point 
by point with random selection of the angular setting 
for the point counting. For each point the AO deviation 
was measured from a fixed intensity point on the flank 
of the central maximum. The curve so obtained was the 
same as that taken with equal incremental steps in AO. 

Results  

The best fringe contrast was obtained with one silicon 
lamella. Seven areas were investigated with a thickness 
range between 7 and 23 pm. One of the measurements 
with good fringe contrast for a region of thickness 
13.6/zm is shown in Fig. 6. We include also the oscil- 
latory portion which is obtained by subtracting a 
smoothed curve from the data. A comparison with 
Fig. 3 shows that the theoretical curve, even with ab- 
sorption, has very much better resolved oscillations. 
One expected source of broadening is the finite diffrac- 
tion width of the first crystal. The extent of this broad- 
ening was determined by convoluting the Darwin- 
Prins curve of the asymmetrically cut first crystal with 
the curve of Fig.3 [Equations (15) and (16) without 
absorption]. Since the affect of absorption is small, 
the calculation was considerably simplified by using 
equations (15) and (16) rather than the more exact 
equations (6) and (12). The affect of the first crystal 
broadening is shown in Fig. 7. The fringe contrast is 
reduced sharply. For the first fringe the low point is 
raised considerably above zero and for all peaks the 
valley between the fringes is filled to a fairly large 
extent. This gives closer agreement to experiment, but 
still is a long way from reproducing the observations. 

At this point we can only enumerate some of the 
other possible broadening mechanisms and speculate 
to what extent they are involved. Our calculated lateral 
coherence width of 508 microns is only for those points 
on the source which have coherent widths centered in 
the slit system. For certain regions of the source, the 
full coherent lateral width will not be seen by the 
specimen and the effective coherent width will be much 
smaller than this value. A width of 500 micron will 
give a loss of overlap region (~  minus shaded area at 
upper surface in Fig. 5) of 5 70 for a 13 micron crystal 
and this loss will increase as the effective W decreases. 
That fraction outside of the overlap regions will pro- 
duce no fringes and add a monotonic background to 
the fringe curves. 

For the convolution in Fig. 7 it was tacitly assumed 
that each point within the width of W on the specimen 
was illuminated with rays having the full range fi2 from 
the first crystal. This is actually not the case since for 
each point on the source the angle of the diffracted 
ray from the first crystal will vary continuously along 
W over the range of &2. This results in reducing the 
effective coherence width and also the overlap region 
and will therefore contribute to the broadening and 
reduction of fringe contrast. 

Slight distortions of the crystal will affect the energy 
flow S very drastically. One of the authors (Hilde- 
brandt, 1959) has shown that the wave field which, in 
a perfect lattice, would normally have energy flow into 
the crystal, can actually change its direction owing to 
a slight bending of the planes and come out through 
the entrance surface. Bonse (1964) studied this effect 
in the vicinity of a dislocation. Any such distortion 
would, of course, adversely affect the fringe contrast. 
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Fig.8. The  da ta  points are the same as those in Fig.6. The 
dashed curve is the tail o f  a Darwin  curve f rom a thick 
crystal. The solid curve is the sum of  the Darwin  curve and  
the Pendel l6sung curve in Fig.7 normal ized  in the rat io 
of  10:1. 
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Fig. 9. Observed mean  fringe separat ion v e r s u s  thickness. The  
solid curve is the mean  fringe separat ion predicted for  a 
beat period A0=25"6 a m  [Equations (11) and (23)]. 
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Most of these effects would tend to destroy the 
necessary plane wave conditions and reduce the fringe 
visibility, and in certain cases actually alter the fringe 
separation. One approximation that can be made is to 
assume that all the effects that would destroy the Pen- 
delISsung would merely add to a monotonic back- 
ground similar to that of the Darwin curve from a thick 
crystal. By trial and error we have combined the con- 
voluted curve of Fig. 7 with a monotonic Darwin curve 
to get the best agreement with our observations. Fig. 8 
gives the curve for a ratio of Darwin to Pendellrsung 
of about 10: 1. The solid curve represents the sum of 
the two functions and the monotonic dashed curve 
is the tail of a Darwin thick crystal curve. The points 
are the experimental values. The agreement between 
observation and the solid curve is quite good. 

In addition to the shape of the fringes we also 
measured the mean fringe separation. To the precision 
with which this value can be determined, we can safely 
neglect unity compared to ~/,2 in equation (17) and have 
the simple relation between fringe separation f and 
thickness d 

f =  Ao/d. (23) 

In Fig. 9 we give the experimentally observed separa- 
tions vs thickness as well as the relationship predicted 
by equation (23) with a value of A0 =25.6/~m calcul- 
ated from the measured F(333) of 5"9. 

The scatter is quite large but the data points lie 
more or less on a straight line tangential to the theory 
curve at about 18/tm. The deviation for small thick- 
ness could possibly be attributed to bending for which 
the thinner regions would be most sensitive. The agree- 
ment with theory is not too satisfactory, but is probably 
within the rather large uncertainty of the measurements. 

Conclusions 

Our experiment has verified the existence of the Pen- 
dellrsung phenomena in the case of Bragg reflection 
from the surface of a thin crystal. This type of Pendel- 
18sung involves the interference of wave fields on the 

same branch of the dispersion surface and as such is 
more within the framework of a plane wave, rather 
than a spherical wave phenomenon. 

We have pointed out that an asymmetrical reflection 
from a perfect crystal has the effect of increasing the 
lateral coherence of an X-ray beam. By this we mean 
that asymmetric reflection can produce a beam whose 
lateral width for a given angular divergence is several 
orders of magnitude larger than could be obtained by 
isolating a bundle of that same divergence from a point 
source of X-rays. The observation of the Pendellrsung 
fringes is an implicit verification that such enhance- 
ment of lateral width does indeed take place. 

We wish to thank T.C. Madden of the Bell Tele- 
phone Laboratories for providing the silicon wafers 
and Dr P. Ho of Cornell who programmed the com- 
puter calculations. 
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Reciprocity Theorem in Optics and its Application to X-ray Diffraction Topographs 
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The reciprocity theorem is applied to X-ray diffraction topographs. The intensity distribution of a 
traverse-type topograph is obtained by knowing the integrated intensity of the section-type topograph 
which would be produced with the same crystal by X-rays emitted from a source located virtually at 
the point concerned. This relation holds in general irrespective of the shape, absorption and distortion 
of the crystal and the polarization of X-rays. 

Introduction namely section and traverse topographs. They are most 
fundamental in transmission diffraction topography. 

This paper describes a relation between two kinds of The experimental procedures oftakingthesetopographs 
X-ray diffraction topograph of transmission type; are described by Lang (1958, 1959) and Kato & Lang 


